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Abstract
We study the dynamical low-temperature behaviour of the Ising spin glass on
the Bethe lattice. Starting from Glauber dynamics we propose a cavity such
as an ansatz that allows for the treatment of the slow (low temperature) part
of dynamics. Assuming a continuous phase transition and ultrametricity with
respect to long time scales we approach the problem perturbatively near the
critical temperature. The theory is formulated in terms of correlation–response
functions of arbitrary order. They can, however, be broken down completely
to products of pair functions depending on two time arguments only. For
binary couplings J = ±I a spin glass solution is found which approaches the
corresponding solution for the SK model in the limit of high connectivity. For
more general distributions P(J ) no stable or marginal solution of this type
appears to exist. The nature of the low-temperature phase in this more general
case is unclear.

PACS numbers: 05.20.−y, 75.10.Nr

This paper is dedicated to David Sherrington on the occasion of his 65th
birthday.

1. Introduction

Most of the work on spin glasses and other systems with frozen-in disorder is based on
the evaluation of the free energy or the ground-state energy. This comprises replica theory,
the cavity method or the TAP equations [1]. As an alternative stochastic dynamics [2] has
been employed for systems with continuous freezing transition [3, 4], e.g. the Sherrington–
Kirkpatrick (SK) model [5], and also for systems with discontinuous transition, e.g. the
spherical spin glass with p-spin interactions [6–8]. The essential difference between the two
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approaches shows up in the thermodynamic limit. The computation of the free energy does
not rely on any kind of dynamics and the question of how equilibrium states can be reached
starting from non-equilibrium initial conditions is not addressed. In fact diverging barriers
build up in the thermodynamic limit N → ∞. As a consequence the approach via dynamics
in the non-ergodic low-temperature phase requires regularization by some long time scale,
for instance the waiting time tw after a quench from high temperature, by introducing slowly
varying bonds [4] or slow cooling [9]. Typically the thermodynamic and long time limit are
taken in the order limtw→∞ limN→∞. This means that diverging barriers cannot be overcome
or the system might be stuck in metastable states [8, 10]. The importance of the order in
which the two limits are performed has been demonstrated in a different context (learning
in a perceptron with binary synapses) [11]. For systems with discontinuous transition the
dynamic freezing transition is higher than the temperature where replica symmetry breaking
sets in, whereas both temperatures are identical for continuous transitions. In this latter case
the coefficients of an expansion of the energy or the Edwards–Anderson order parameter near
Tc are identical at least up to the fourth order [9]. At zero temperature, however, the energy
obtained within dynamics is expected to be higher than the ground-state energy determined
within replica theory. Furthermore, the energy found within dynamics may depend on details
of the cooling schedule [12].

Spin glasses on diluted graphs, for instance on the Bethe lattice, share finite connectivity
with spin glasses in finite dimensions. Nevertheless they are of mean field character as the
fully connected SK model [1, 5]. Following earlier attempts [14, 15], the Ising spin glass
on the Bethe lattice has been solved by Mézard and Parisi [13] using the cavity method on
the level of one-step replica symmetry breaking. The cavity method benefits from the local
tree-like structure of the Bethe lattice and deals on the level of 1RSB with distributions of
local fields and distributions of those distributions. The resulting functional equations have
been solved numerically with a population dynamics algorithm for binary couplings J = ±I .

Investigating the dynamics of systems of Ising spins one has to specify not only the
Hamiltonian (energy) but also the kind of dynamics. In the present approach Glauber
dynamics, i.e. stochastic single spin flip dynamics with transition probabilities depending
on temperature, is used. In the non-ergodic low-temperature phase a separation of short and
long time scales is assumed. The longest time scale is realized by a waiting time tw or by some
other means [4, 9]. On the short time scale the validity of fluctuation–dissipation theorems
are assumed to hold. They are characteristics for equilibrium and in this context they describe
equilibrium within a single valley of the energy landscape. On the long time scale in analogy
to the cavity method [13] a functional equation for the distribution of histories of local fields
is derived, investigating the iterative assembly of local subtrees of the Bethe lattice to new
subtrees. Probability distributions for histories have previously been used by Hatchett et al
[16] in a similar context. In contrast to the present investigation this paper deals, however,
with parallel updates and short time dynamics.

Based on this functional equation, hierarchically connected relations are derived for
correlation–response functions on the long time scale, connecting functions of arbitrary order.
In order to truncate this system, an expansion in powers of the departure of the temperature
from the freezing temperature is employed. Such an expansion is known for the dynamics of
the SK model. It turns out that correlation–response functions of higher order can be broken
down completely to expressions involving pair functions depending on two time arguments
only. For binary couplings J = ±I a marginal solution resembling the one for the SK model
is found [3, 4].

The situation for more general distributions P(J ) is unclear. There exists a critical
temperature where the ergodic high temperature solution becomes unstable. The above
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solution does, however, not apply and no other stable or marginal solution could be found.
The expansion contains contributions corresponding to the one-step replica symmetry breaking
solution. The original static 1RSB solution [13] has been evaluated for J = ±I only. It would
be interesting to see whether this solution persists for general P(J ).

The paper is organized as follows. Section 2 contains a brief survey of Glauber dynamics
and fixes some notations. In section 3 the dynamics of the Ising spin glass on the Bethe lattice
is formulated, an effective single-site evolution is introduced and equilibrium properties are
investigated. Dynamics on long time scales is dealt with in section 4 including a formulation
in terms of distributions of slow components of local fields. In view of an expansion valid in
the neighbourhood of the freezing temperature, this is reformulated in terms of correlation–
response functions. Section 5 contains the expansion around the critical temperature in leading
order for general P(J ) and in next to leading order for J = ±I . The paper concludes with a
stability analysis in section 6 and a brief discussion.

2. Glauber dynamics of a single spin

The present investigation is based on Glauber dynamics for Ising spins. We start with a brief
outline of the formulation [11] describing the dynamics of a single spin. The Hamiltonian of
the spin in an external field h is

H = −hσz. (2.1)

The actual state of the spin at time t is described by a two-component vector

|ρ(t)) =
(

p+(t)

p−(t)

)
=

(
1
2 (1 + m(t))

1
2 (1 − m(t))

)
. (2.2)

Introducing the Pauli matrix

σz =
(

1 0
0 −1

)
(2.3)

the expectation value of the spin is given by

〈σz〉 = (1 1)
(

1 0
0 −1

)(
p+(t)

p−(t)

)
= (1|σz|ρ(t)) = m(t). (2.4)

It is convenient to use a notation resembling quantum mechanics, although Glauber dynamics
is purely classical. The time evolution is described by a Liouville operator, a two-by-two
matrix, acting on the state

∂t |ρ(t)) = L(t)|ρ(t)) (2.5)

with Liouvillian

L(t) = −1

2
γ

(
1 − tanh(βh(t)) −1 − tanh(βh(t))

−1 + tanh(βh(t)) 1 + tanh(βh(t))

)
. (2.6)

In equilibrium, for constant h,L|ρ̄) = 0. This determines the equilibrium state

|ρ̄) = 1

2

(
1 + tanh(βh)

1 − tanh(βh)

)
= e−βhσ

2 cosh(βh)
|1) (2.7)

with |1) being the two-dimensional unit vector. The temporal evolution of the spin is

σ̇z(t) = σzL(t) − L(t)σz. (2.8)
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In addition to the spin operator a response operator σ̂z(t) is introduced. It describes the action
of a variation δh(t) of the external field at time t

σ̂z = ∂L(t)

∂h(t)
. (2.9)

Acting on an equilibrium state these operators obey a fluctuation–dissipation theorem

σ̂z|ρ̄) = βσ̇z|ρ̄). (2.10)

For time-dependent field h(t) the Liouvillians for different times do not commute in general.
This can formally be overcome by introducing a time ordering operator T rearranging products
of objects at different time such that they are ordered from left to right according to the
decreasing time. This allows us to write for t > t0

|ρ(t)) = T
[
e
∫ t

t0
dt ′L(t ′)]|ρ(t0)). (2.11)

3. Ising model on the Bethe lattice

3.1. Dynamics

We consider Ising spins σi on the Bethe lattice with couplings Jij . The Hamiltonian (energy)
is

H = −1

2

∑
i,j

Jij σiσj −
∑

i

hiσi . (3.1)

The couplings Jij are independent stochastic variables taken from some distribution P(J )

such that Jij = 0 and J 2
ij = I 2. The underlying vector space for the complete system is

spanned by the direct product of the two-dimensional vectors associated with each of the spins
σi .

The dynamics is ruled by the Liouvillian

L(t) =
∑

i

Li (ki) (3.2)

where Li (ki) given by (2.6) acts on the corresponding subspace of site i and depends on the
effective field

ki = −∂H

∂σi

= hi +
∑

j

Jij σj . (3.3)

Expectation values of time-dependent observables with initial condition at t0 are written as

〈A(t)B(t ′) · · ·〉 = (1|NA(t)T
[
e
∫ t

t ′ ds
∑

i Li (ki (s))
]
B(t ′)T

[
e
∫ t ′
··· ds

∑
i Li (ki (s))

]
· · · T [

e
∫ ···
t0

ds
∑

i Li (ki (s))
]|ρ(t0))N (3.4)

for t > t ′ > · · · > t0.
Adopting in the following Ito-calculus the effective fields (3.3) are retarded, i.e.

ki(t) = h +
∑

j

Jij σj (t
−). (3.5)

It is convenient to integrate over the effective fields ki(t) in (3.4) and to take (3.5) into account
by introducing appropriate δ-functions. Those are written in their Fourier representation
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integrating in addition over imaginary auxiliary fields κ̂i (t). This leads to a path integral
representation

〈A(t)B(t ′) · · ·〉 =
∏

i

∫
D{k̂i , ki} e

∑
i

∫
t0

ds k̂i (s){h−ki (s)}

× (1|NT
[
A(t)B(t ′) · · · e

∑
i

∫
t0

ds{k̂i (s)
∑

j Jij σj (s
−)+Li (ki (s),s)}]|ρ(t0))N . (3.6)

A state |ρ)N of the system with N sites is in general a superposition of direct products of
two-dimensional vectors each representing a single spin. The unit vector for N sites |1)N is a
direct product of single-site unit vectors. (1|N is its adjoint.

The equilibrium state, for given J , can be expressed as

|ρ̄)N = Z−1 eβ
∑

i hiσi+ 1
2 β

∑
ij Jij σiσj |1)N . (3.7)

It obeys

Li (ki)|ρ̄)N = 0. (3.8)

3.2. Effective single-site evolution

For time-dependent expectation values involving the spin at a single site, say site o only,
(3.6) can be rewritten introducing an effective retarded time evolution. It is obtained by
performing the expectation values with respect to all spins except σo. Assuming equilibrium
initial conditions expectation values of quantities at a single site, say o, can be written as (3.6),

〈σo(t) · · ·〉 =
∫

D{k̂, k} e
∫
t0

ds k̂(s){h−k(s)}

× (1|oT
[
σo(t) · · ·Yo({k̂}{σo}; t0) e

∫
t0

dsLo(k(s),s)]|ρ̄o(k(t0)))o. (3.9)

The action of the remaining part of the system is contained in

Yo({k̂}{σ }; t0) =
∏

i

′ ∫
D{k̂i , ki} e

∑′
i

∫
t0

ds k̂i (s){h−ki (s)}

× (1|N−1T
[
e
∑′

i Joi

∫
t0

ds[k̂(s)σi (s
−)+σ(s−)k̂i (s)] e

∑′
i

∫
t0

ds{k̂i (s)
∑′

j Jij σj (s
−)+Li (ki (s),s)}]|ρ̄)N−1

=
∏

i

′ ∫
D{k̂i , ki} e

∑′
i

∫
t0

ds k̂i (s){h−ki (s)}〈e∑′
i Joi

∫
t0

ds[k̂(s)σi (s
−)+σ(s−)k̂i (s)]

〉
N−1 (3.10)

and the initial condition in (3.9) is

|ρ̄o(k))o = 1

2 cosh(βk)
eβkσo |1)o. (3.11)

In the above expression the primed products and sums run over i �= o. The expectation values
in (3.10) refer to the system without the spin at site o.

It should be pointed out that the above expression holds for given values of the couplings
Jij and the average over Jij has still to be evaluated.

3.3. Equilibrium

The above path integral comprises an integration at the initial time t0. This is investigated in
the following. The single time (static) expectation value of σo(to) is

〈σo(t0)〉 = Z−1
o

∫
dk̂ dk

2π
ek̂{h−k}(1|σYo(k̂) eβkσ |1) (3.12)

5
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and the effective action (3.10) reduces to

Yo(k̂) = 〈
ek̂

∑′
i Joiσi

〉
N−1. (3.13)

In analogy to the cavity method we define co and ko writing

eβ(co+koσ ) =
∫

dk̂ dk

2π
ek̂{h−k}Yo(k̂) eβkσ . (3.14)

This yields for the partition function and the local magnetization

Zo = 2 eβco cosh(βko) and 〈σo〉 = tanh(βko). (3.15)

The two quantities defined above result in

co = 1

β

{
ln

(〈
eβ

∑′
i Joiσi

〉
N−1

)
+ ln

(〈
e−β

∑′
i Joiσi

〉
N−1

)}
(3.16)

ko = h +
1

2β

{
ln

(〈
eβ

∑′
i Joiσi

〉
N−1

) − ln
(〈

e−β
∑′

i Joiσi
〉
N−1

)}
. (3.17)

For the SK model and the Bethe lattice the expectation values for sites i can be assumed
to factorize. For Ising spins and using (3.15) we find the identity

〈e±βJoiσi 〉N−1 = cosh(βJoi) ± tanh(βki) sinh(βJoi) (3.18)

which allows us to express co and ko in terms of the fields of the adjacent sites:

co =
∑

i

′
c(Joi, ki), ko = h +

∑
i

′
u(Joi, ki), (3.19)

c(J, k) = 1

2β
ln(cosh2(βJ ) − tanh2(βk) sinh2(βJ )), (3.20)

u(J, k) = 1

β
artanh(tanh(βk) tanh(βJ )). (3.21)

In particular for J → 0, i.e. for the SK model,

u(J, k) = J tanh(βk), c(J, k) = βJ 2

2 cosh2(βk)
. (3.22)

In view of this limit correlation functions are later defined with rescaled quantities

U(J, κ) = 1

I
u(J, κ), (3.23)

where I is the typical size of the couplings. This ensures, e.g., that the Edwards–Anderson
order parameter stays finite in the SK limit.

4. Slow dynamics

4.1. Distribution of slow fields

Dynamics on short time scales takes place within a single valley of the energy landscape;
dynamics on long time scales is supposed to be due to transitions among different valleys.
Assume there exists a time scale t∗ � 1 separating fast and slow motions. This time scale
might be realized by some waiting time, slowly changing couplings or other means [4, 9]. The
local field k(t) and the conjugate field k̂(t) are split into fast and slow contributions

k(t) → k(t) + κ(t/t∗), k̂(t) → k̂(t) +
1

t∗
κ̂(t/t∗). (4.1)
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The fast parts are due to the fluctuations around the quasi-equilibrium state within a single
valley. The slow part κ(τ) acts like an external field and the quasi-equilibrium state follows
this field adiabatically. Evaluating time-dependent correlation functions of the spin σ0 on this
long time scale, this spin can be viewed as being in equilibrium in the slow field resulting in

〈σo(t
∗τ)σo(t

∗τ ′) · · ·〉 = tanh(βκo(τ )) tanh(βκo(τ
′)) · · · . (4.2)

The effective field is given by (3.19) with k replaced by κ(τ), i.e.

κo(τ ) = h +
∑

i

′
u(Joi, κi(τ

−)). (4.3)

In the low-temperature regime of a spin glass this field is, however, distributed and (4.2) has
to be averaged over some distribution Po({κ0}). With (4.3) this distribution can be calculated
from the distribution of slow fields at the neighbouring sites i. Continuing this mapping to
outer shells of the lattice an iteration scheme is set up similar to the course of action in the
cavity approach [13]. This program involves the following steps.

Performing the average over the couplings Jij and defining

Qo({κ̂, κ}) = 〈
e
∫

dτ
∑′

i {κ̂(τ )u(Joi ,κi (τ−))+κ̂i (τ )u(Joi ,κ(τ−))}〉J
N−1 (4.4)

this distribution is obtained by integration over κ̂

Po({κ}) =
∫

D{κ̂} e
∫

dτ κ̂(τ ){h−κ(τ)}Qo({κ̂, κ}). (4.5)

The average on the right-hand side of (4.4) involves a corresponding joint distribution QN−1

of the fields κ̂i and κi at the K + 1 neighbouring sites. The second term in the exponent is the
contribution of site o to the local field at site i, corresponding to the Onsager reaction field.

Assuming factorization of the expectation values on the right-hand side of (4.4) leads to

Qo({κ̂, κ}) =
∏

i

′ ∫
D{κ̂i , κi} e

∫
dτ κ̂i (τ ){h−κi (τ )}Qi ({κ̂i , κi})

× e
∫

dτ {κ̂(τ )u(Joi ,κi (τ−))+κ̂i (τ )u(Joi ,κ(τ−))}Joi

. (4.6)

The functionalQo({κ̂, κ}) contains the action of all K+1 spins surrounding site o. Qi ({κ̂i , κi}),
on the other hand, contains only the action of the K spins on the outgoing branches originating
at site i. The action of the spin σo is taken into account by the bond-averaged exponential in
(4.6). The functional Qi is given by a similar average over the distributions on the next shell
of sites on the tree. Iterating this process, a fixed point distribution is assumed to exist. It is
given by

Q({κ̂, κ}) =
[ ∫

D{λ̂, λ} e
∫

dτ λ̂(τ ){h−λ(τ)}Q({λ̂, λ}) e
∫

dτ {κ̂(τ )u(J,λ(τ−))+λ̂(τ )u(J,κ(τ−))}J
]K

. (4.7)

The functional Qo({κ̂, κ}) for the central spin at site o is given by the same expression with K
replaced by K + 1.

The above line of arguments follows pretty much the steps in the cavity method calculation
of Mézard and Parisi [13]. The functional fixed point equation (4.7) is, however, more
general. The only assumptions made are the separation of time scales and the factorization
of expectation values on different subtrees. In particular, it contains in principle contributions
corresponding to the full replica symmetry breaking solutions. Within this formulation the
replica symmetric solution is obtained by leaving out the reaction term in (4.7) as shown later.

7
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4.2. Correlation–response functions

There is little hope to find solutions without relying on approximations or expansions. In
the following we investigate an expansion in powers of the difference ε = Tc−T

Tc
between

transition temperature Tc and the actual temperature T. Such an expansion is expected to apply
in the neighbourhood of a continuous freezing transition where the Edwards–Anderson order
parameter qEA ∼ ε near Tc. This is the case for the SK model.

Rather than working with the full functional Q({κ̂, κ}), it is sufficient to investigate
its moments, the correlation–response functions on the long time scale. With the rescaled
quantities U(J, κ), (3.23), they are defined as

Cnm(τ1, · · · , τn; τ ′
1, · · · , τ ′

m; J ) =
∫

D{κ̂, κ} e
∫

dσ κ̂(σ ){h−κ(σ )}Q({κ̂, κ})

×
n∏

ν=1

U(J, κ(τν))

m∏
µ=1

κ̂(τ ′
µ). (4.8)

Inserting (4.7) and expanding the exponential, a hierarchy of equations for the correlation–
response functions is obtained which is derived along the following lines: evaluating a function
Cnm(τ1, · · · , τn; τ ′

1, · · · , τ ′
m; J ) there is the product over U(J, κ(τν)) involving κ at the times

τν . The factors κ̂(τ ′
µ) can be replaced under the path integral by functional derivatives

δ/δκ(τµ) acting on Q({κ̂, κ}), at least as long as all time arguments are different (otherwise
the derivatives could act on the products of U(J, κ(τν)) as well). The derivatives acting on
Q create additional terms involving κ(τ ′

µ). Expanding the second term in the exponential of
(4.7), internal integrations over times σρ are generated. They contribute additional factors
now depending on κ(σρ). In order l of this expansion there are altogether functions of n+m+ l

discrete times. For τ �= τν, τ
′
µ, σρ the path integral over κ(τ) can be performed resulting in

κ̂(τ ) = 0. This leaves integrations over κ̂ and κ at those discrete times only. With (4.7) they
reduce to functions of correlation–response functions. This general strategy is applied in the
following to correlation–response functions of lowest order.

5. Expansion around Tc

5.1. Leading order for general P(J )

We investigate an expansion in powers of ε = Tc−T

Tc
. For the SK model Cnm ∼ ε(n+3m)/2 is

found [3, 4] and the same scaling with ε is proposed for the present investigation as well. Later
it is shown that this scaling is fulfilled in a consistent manner. For simplicity the following
discussion will be restricted to h = 0.

We may start with an expansion of (4.7)

Q({κ̂, κ}) ≈
[

1 +
1

2
I 2

∫
dσ dσ ′κ̂(σ )κ̂(σ ′)C2,0(σ, σ ′; J ′)

J ′

+ I 2
∫

dσ dσ ′κ̂(σ )U(J ′, κ(σ ′))C1,1(σ, σ ′; J ′)
J ′

+
1

4!
I 4

∫
dσ1 dσ2 dσ3 dσ4κ̂(σ1)κ̂(σ2)κ̂(σ3)κ̂(σ4)C4,0(σ1, σ2, σ3, σ4; J ′)

J ′

+
1

3!
I 4

∫
dσ1 dσ2 dσ3 dσ4κ̂(σ1)κ̂(σ2)κ̂(σ3)U(J ′, κ(σ4))C3,1(σ1, σ2, σ3; σ4; J ′)

J ′

+ · · ·
]K

. (5.1)
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Evaluating C2,0(τ, τ
′; J ) and keeping terms ∼ε2

C2,0(τ, τ
′; J ) =

∫
D{κ̂, κ} e

∫
dσ κ̂(σ ){h−κ(σ )}U(J, κ(τ ))U(J, κ(τ ′))

×
{

1 +
1

2
I 2K

∫
dσ dσ ′κ̂(σ )κ̂(σ ′)C2,0(σ, σ ′; J ′)

J ′

+
1

4!
I 4K

∫
dσ1 dσ2 dσ3 dσ4κ̂(σ1)κ̂(σ2)κ̂(σ3)κ̂(σ4)

[
C4,0(σ1, σ2, σ3, σ4; J ′)

J ′

+ 3(K − 1)C2,0(σ1, σ2; J ′)
J ′

C2,0(σ3, σ4; J ′′)
J ′′]}

. (5.2)

Performing the path integration over κ(σ ) for σ �= τ, τ ′ the integrals over σ... reduce to
sums over σ... = τ, τ ′ and the path integrals become ordinary integrations over variables
κ̂ = κ̂(τ ), κ = κ(τ), κ̂ ′ = κ̂(τ ′) and κ ′ = κ(τ ′).

It is convenient to introduce vertices

Vn(J ) = ∂n−1

∂κn−1
U(J, κ)|κ=0 (5.3)

with Vn = 0 for odd n. In the following we use the notation A(J )B(J )
J → AB. Then (5.2)

yields

C2,0(τ, τ
′; J ) =

{
I 2KV 2

2 (J ) +
1

2
I 4K(K − 1)V2(J )V4(J )

[
C2,0(τ, τ ) + C2,0(τ

′, τ ′)
]}

×C2,0(τ, τ
′) +

1

3!
I 4KV2(J )V4(J )[C4,0(τ, τ, τ, τ

′) + C4,0(τ, τ
′, τ ′, τ ′)]. (5.4)

Evaluation of C4,0, again with h = 0, in order ε2 results in

C4,0(τ1, τ2, τ3, τ4; J ) = I 4KV 4
2 (J )C4,0(τ1, τ2, τ3, τ4) + I 4K(K − 1)V 4

2 (J )

× [C2,0(τ1, τ2)C2,0(τ3, τ4) + C2,0(τ1, τ3)C2,0(τ2, τ4)

+ C2,0(τ1, τ4)C2,0(τ2, τ3)] (5.5)

and performing the average over J we get

C4,0(τ1, τ2, τ3, τ4) = I 4K(K − 1)
V 4

2

1 − I 2KV 4
2

[C2,0(τ1, τ2)C2,0(τ3, τ4)

+ C2,0(τ1, τ3)C2,0(τ2, τ4) + C2,0(τ1, τ4)C2,0(τ2, τ3)]. (5.6)

With this C2,0 becomes

C2,0(τ, τ
′; J ) =

{
I 2KV 2

2 (J ) +
1

2
I 4K(K − 1)

V2(J )V4(J )

1 − I 4KV 4
2

[C2,0(τ, τ ) + C2,0(τ
′, τ ′)]

}

×C2,0(τ, τ
′). (5.7)

It should be noted that the correlation function C4,0 has been broken down completely to
products of pair functions C2,0. This can be done for correlation–response functions Cn,m

with general n and m in higher orders as well. In this case the products also contain response
functions C1,1.

Averaging over J a non-trivial solution with C2,0(τ, τ
′) �= 0 requires that the expression

in the curly bracket on the right-hand side equals 1. Including terms of higher orders in ε

shows that a corresponding expression holds only for the time derivative. Assuming time
translational invariance we can write

∂τC2,0(τ ) = Y (τ)∂τC2,0(τ ) (5.8)

9
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with

Y (τ) = I 2KV 2
2 + I 4K(K − 1)

V2V4

1 − I 4KV 4
2

C2,0(0). (5.9)

In the first order Y (τ) is constant and (5.8) would hold for C2,0(τ ) as well. Including higher
orders, however, it depends explicitly on τ and (5.8) holds for the derivative only. A non-trivial
solution requires Y (τ) = 1 for all τ and this eventually determines the full time dependence
of C2,0(τ ).

The evaluation of C1,1 follows similar lines. Since C1,1 ∼ ε2 contributions ∼ ε3 are kept,
and the response function becomes

C1,1(τ, τ
′; J ) = I 2KV2(J )V2C1,1(τ, τ

′)

+
1

2
I 4K(K − 1)V4(J )C2,0(τ, τ )V2C1,1(τ, τ

′)

+
1

2
I 4K(K − 1)V2(J )V4C1,1(τ ; τ ′)C2,0(τ

′, τ ′)

+
1

3!
I 4KV4(J )V2C3,1(τ, τ, τ ; τ ′) +

1

2
I 4KV2(J )V4C3,1(τ, τ

′, τ ′; τ ′). (5.10)

Likewise the four-point function on the right-hand side obeys

C3,1(τ1, τ2, τ3; τ4; J ) = I 4KV 3
2 (J )V2C3,1(τ1, τ2, τ3; τ4)

+ I 4K(K − 1)V 3
2 (J )[V2C1,1(τ1; τ4)C2,0(τ2, τ3)

+ V2C1,1(τ2; τ4)C2,0(τ1, τ3) + V2C1,1(τ3; τ4)C2,0(τ1, τ2)]. (5.11)

The average over J requires some attention because on the right-hand side of (5.10) and
(5.11) the averages contain different vertices Vn(J ). Nevertheless they can be evaluated
successively. Multiplying (5.11) with V2(J ) and performing the J -average, V2C3,1 can be
expressed in terms of C2,0 and V2C1,1. Multiplying (5.11) with V4(J ), averaging and using
the result for V2C3,1, V4C3,1 is again written in terms of pair functions. This is inserted into
(5.10) resulting in

C1,1(τ ; τ ′; J )

=
[
I 2KV2(J ) +

1

2
I 4K(K − 1)

V4(J )C2,0(τ, τ ) + I 4KV2(J )V 3
2 V4C2,0(τ

′, τ ′)

1 − I 4KV 4
2

]

×V2C1,1(τ ; τ ′) +
1

2
I 4K(K − 1)V2(J )C2,0(τ

′, τ ′)V4C1,1(τ ; τ ′). (5.12)

This yields in lowest order

V4C1,1(τ ; τ ′) = I 2KV2V4 V2C1,1(τ ; τ ′). (5.13)

Inserted into (5.12) a closed equation for V2C1,1 is obtained

V2C1,1(τ ; τ ′) =
{
I 2KV 2

2 +
1

2
I 4K(K − 1)

V2V4

1 − I 4KV 4
2

C2,0(τ, τ ) +
1

2
I 4K(K − 1)

×
[
I 2KV 2

2 V2V4 +
I 4KV 2

2 V 3
2 V4

1 − I 4KV 4
2

]
C2,0(τ

′, τ ′)
}
V2C1,1(τ ; τ ′) (5.14)

which is again of the form

V2C1,1(τ ) = Y ′(τ )V2C1,1(τ ) (5.15)

assuming time translational invariance.
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Pointing out the difference between Y (τ), (5.9) and Y ′(τ ) we write

Y ′(τ ) = Y (τ) +
1

2
I 4K(K − 1)

{
I 4K

(
V 2

2 V 3
2 V4 − V 4

2 V2V4
)

1 − I 4KV 4
2

− [
1 − I 2KV 2

2

]
V2V4

}
C2,0(0). (5.16)

This allows for the following non-trivial solutions:

(a) Y (τ) = 1, Y ′(τ ) �= 1 : C2,0(τ ) �= 0, C1,1(τ ) = 0.

(b) Y (τ) �= 1, Y ′(τ ) = 1 : C2,0(τ ) = 0, C1,1(τ ) �= 0.

(c) Y (τ) = Y ′(τ ) = 1 : C2,0(τ ) �= 0, C1,1(τ ) �= 0.

A solution of type (a) has been found for instance for the spherical version of the SK
model [17]. It does not describe glassy behaviour since the response function vanishes on the
long time scale, although the correlation function shows non-trivial properties. A solution of
type (b) does actually not exist as shown later.

Only the last solution is supposed to be characteristic for a spin glass phase. Since
I 2KV 2

2 = 1 +O(ε) the last term in (5.16) does not contribute in order ε and only the first term
in the bracket has to be taken into account. This means, however, that solution (c) requires

V 2
2 V 3

2 V4 = V 4
2 V2V4. (5.17)

With (3.21), (3.23) and (5.3)

V2(J ) = I−1 tanh(βJ ) V4(J ) = −2β2I−1 tanh(βJ )(1 − tanh2(βJ )) (5.18)

and

V 2
2 (J )V 3

2 (J ′)V4(J
′) − V 4

2 (J )V2(J
′)V4(J

′)
= 2β2I−6 tanh2(βJ ) tanh2(βJ ′)(tanh2(βJ ) − tanh2(βJ ′))2. (5.19)

This shows that (5.17) can be fulfilled only with J = ±I and that this kind of solution does
not exist for more general P(J ). This result is quite remarkable, indicating the special role of
the binary distribution of couplings.

5.2. Next to leading order for J = ±I

The correlation–response functions (4.8) have the symmetry

Cnm(· · · ; J ) = (−1)nCnm(· · · ; −J ). (5.20)

For binary couplings J = ±I the bond average therefore becomes almost trivial. For simplicity
we set h = 0 in the following and assume time translational invariance on the long time scale.
The strategy to evaluate contributions of higher orders in ε is analogous to what has been
described in section 5.1. Evaluating C2,0 in order ε3 requires to compute C4,0 and C6,0 in
the same order and to break them down successively to products of pair functions C2,0. In
addition, in this order an internal integration shows up taking into account the third line on the
right-hand side of (5.1) leading to a contribution of the form

C2,0(τ, τ
′) = · · · + V2

∫
dσC3,1(τ, τ

′, σ ; σ +). (5.21)

The four-point function C3,1 can again be broken down to products of pair functions according
to (5.11).
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Using the notation

q̄(τ − τ ′) = C2,0(τ, τ
′; I ), r̄(τ − τ ′) = C1,1(τ ; τ ′; I ), Vn = Vn(I ) (5.22)

and collecting all contributions up to order ε3 one obtains

q̄(τ ) = I 2KV 2
2 q̄(τ ) + I 4K(K − 1)

V2V4

1 − I 4KV 4
2

q̄(0)q̄(τ )

+ I 6K(K − 1)
1

1 − I 4KV 6
2

{
K − 2 + 3I 4K(K − 1)

V 4
2

1 − I 4KV 4
2

}

×
{[

1

4

(
V2V6 + V 2

4

)
+ 3I 4K

V 4
2 V 2

4

1 − I 4KV 4
2

]
q̄2(0)

+
1

3!

[
V 2

4 + 2I 4K
V 4

2 V 2
4

1 − I 4KV 4
2

]
q̄2(τ )

}
q̄(τ )

+ I 4K(K − 1)
V 3

2

1 − I 4KV 4
2

∫
dσ {r̄(τ + σ)q̄(σ ) + q̄(τ − σ)r̄(σ )}. (5.23)

The corresponding calculation for the response function yields

r̄(τ ) = I 2KV 2
2 r̄(τ ) + I 4K(K − 1)

V2V4

1 − I 4KV 4
2

q̄(0)r̄(τ )

+ I 6K(K − 1)
1

1 − I 6KV 6
2

{
K − 2 + 3I 4K(K − 1)

V 4
2

1 − I 4KV 4
2

}

×
{[

1

4

(
V2V6 + V 2

4

)
+ 3I 4K

V 4
2 V 2

4

1 − I 4KV 4
2

]
q̄2(0)

+
1

2

[
V 2

4 + 2I 4K
V 4

2 V 2
4

1 − I 4KV 4
2

]
q̄2(τ )

}
r̄(τ )

+ I 4K(K − 1)
V 3

2

1 − I 4KV 4
2

∫
dσ r̄(τ − σ)r̄(σ ). (5.24)

5.3. Ultrametric time parametrization

The low-temperature phase of the SK model is characterized by a hierarchy of long time scales
ranging from t∗ to some longest time scale tw. Eventually the limit tw → ∞ is taken. In order
to keep track of the long time scales it is convenient to introduce the parametrization [4]

t = t1−x(τ)
w , x(t) = 1 − ln(t)

ln(tw)
, (5.25)

and write

q̄(τ ) = Q̄(x(t∗τ)), r̄(τ ) = −t∗ẋ(t∗τ)R̄(x(t∗τ)). (5.26)

With the above definition

x(t + t ′) = 1 − ln
(
t1−x(t)
w + t1−x(t ′)

w

)
ln(tw)

= x(t) − ln
(
1 + tx(t)−x(t ′)

w

)
ln(tw)

(5.27)

and for t > t ′ and with it x(t) < x(t ′)

x(t + t ′) = x(t) − ln
(
1 + tx(t)−x(t ′)

w

)
ln(tw)

≈ x(t) − tx(t)−x(t ′)
w

ln(tw)
≈ x(t). (5.28)
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The corresponding result for t < t is x(t + t ′) ≈ x(t ′). This yields the ultrametric relation

x(t + t ′) = x(max(t, t ′)). (5.29)

With it the integrals in (5.23) and (5.24) become∫ τ

0
dσ r̄(τ − σ)q̄(σ ) +

∫ ∞

0
dσ {r̄(τ + σ)q̄(σ ) + q̄(τ + σ)r̄(σ )}

→ 2Q̄(x)

∫ 1

x

dx ′R̄(x ′) + 2
∫ x

0
dx ′Q̄(x ′)R̄(x ′) (5.30)

and ∫ τ

0
dσ r̄(τ − σ)r̄(σ ) → −2t∗ẋ(t ∗ τ)R̄(x)

∫ 1

x

dx ′R̄(x ′). (5.31)

This allows us to write (5.24) in the form

R̄(x) = Ȳ (x)R̄(x) (5.32)

with

Ȳ (x) = Y0 + Y1Q̄(1) +
1

2
Y2Q̄

2(1) +
1

2
Y2xQ̄

2(x) + Yr

∫ 1

x

dx ′R̄(x ′) (5.33)

and the coefficients

Y0 = I 2KV 2
2 , (5.34)

Y1 = I 4K(K − 1)
V2V4

1 − I 4KV 4
2

, (5.35)

Y2 = I 6K(K − 1)
1

1 − I 4KV 6
2

{
K − 2 + 3I 4K(K − 1)

V 4
2

1 − I 4KV 4
2

}

×
{

1

2

(
V2V6 + V 2

4

)
+ 6I 4K

V 4
2 V 2

4

1 − I 4KV 4
2

}
, (5.36)

Y2x = I 6K(K − 1)
1

1 − I 6KV 6
2

{
K − 2 + 3I 4K(K − 1)

V 4
2

1 − I 4KV 4
2

}

×
{
V 2

4 + 2I 4K
V 4

2 V 2
4

1 − I 4KV 4
2

}
, (5.37)

and

Yr = 2I 4K(K − 1)
V 3

2

1 − I 4KV 4
2

. (5.38)

The correlation function (5.23) becomes

Q̄(x) =
{
Y0 + Y1Q̄(1) +

1

2
Y2Q̄

2(1) +
1

3!
Y2xQ̄

2(x)

}
Q̄(x)

+ Yr

{
Q̄(x)

∫ 1

x

dx ′R̄(x ′) +
∫ x

0
dx ′Q̄(x ′)R̄(x ′)

}
. (5.39)

Differentiation with respect to x results in

∂xQ̄(x) = Ȳ (x)∂xQ̄(x) (5.40)

with the same Ȳ (x) as above. This allows a non-trivial solution for Ȳ (x) = 1.

13



J. Phys. A: Math. Theor. 41 (2008) 324017 M Kiemes and H Horner

5.4. Results in next to leading order

In particular for x = 1 and in the second order we get

Q̄(1) = qEA = 1 − Y0

Y1
− 1

2

(Y2 + Y2x)(1 − Y0)
2

Y 3
1

. (5.41)

Lowering the temperature a non-zero Edwards–Anderson order parameter qEA > 0 shows up
first at a critical temperature where

Y0 = I 2KV 2
2 = K tanh2(βI) = 1. (5.42)

This determines the critical temperature

Tc = I

artanh(1/
√

K)
, (5.43)

and choosing

I = artanh(1/
√

K) (5.44)

the critical temperature is Tc = 1.
Expanding the vertices and coefficients (5.36)–(5.38) in powers of ε = 1 − T

Y0 = 1 + 2I
K − 1√

K
ε + I (IK − 3I + 2

√
K)

K − 1

K
ε2,

Y1 = −2I 2(K − 1) − 4I 2(I
√

K + 1)(K − 1)ε, (5.45)

Y2 = 10I 4(K2 − 1), Y2x = 4I 4(K2 − 1), Yr = 2I
√

K

and (5.41) becomes

qEA = 1

I
√

K
ε +

[
2
K + 1

K
− 1

I
√

K

]
ε2. (5.46)

Differentiating (5.33) with respect to x gives

R̄(x) = Y2x

Yr

Q̄(x)∂xQ̄(x) = 2I 3 K2 − 1√
K

Q̄(x)∂xQ̄(x). (5.47)

This verifies that R̄(x) ∼ ε2.
In equilibrium a fluctuation–dissipation theorem (FDT) holds, i.e. r(t) = −β∂tq(t). As

pointed out earlier this is also expected to hold in the glassy state for t < t∗. On the long time
scale, however, the FDT is violated. We may introduce a measure X for the violation of the
FDT

r̄(τ ) = −βX(τ)∂τ q̄(τ ), R̄(x) = βX̄(Q̄(x))∂xQ̄(x) (5.48)

with

X̄(q) = Y2x

Yr

q = 2I 3 K2 − 1√
K

q for 0 < q < qEA. (5.49)

in lowest order.
The fact that X̄ depends on Q̄ only holds in higher orders as well. For t < t∗ the

correlation function obeys q(t) > qEA and we can set X̄(q) = 1 for t < t∗. This quantity is
related to Parisi’s overlap distribution function P(q) = ∂qX̄(q).

Equation (5.47) does not fix the actual form of Q̄(x) or R̄(x). Using the so-called Parisi
gauge [18], βX(Q̄(x)) = x,

Q̄(x) = Yr

Y2x

x for x < x∗ (5.50)
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with

x∗ = Y2x

Yr

qEA (5.51)

and t∗ = tx
∗

w .
For K → ∞ the known results for the SK model are recovered.

6. Stability analysis

6.1. Solutions for general distribution of couplings

For general distributions P(J ) the difference Ȳ ′(x) − Ȳ (x), given in (5.16) is non-zero. In
order ε the last term ∼1 − I 2KV 2

2 does not contribute. The remaining term contains

V 2
2 V 3

2 V4 − V 4
2 V2V4 � 0, (6.1)

which is positive according to (5.19) unless J = ±I . Accordingly Ȳ ′(x) > Ȳ (x) for general
distributions P(J ).

This still allows for solution (a) of section 5.1 with R̄(x) = 0. The last term in
(5.33) vanishes and Q̄(x) = qEA, given in (5.46). This solution does not show any time
dependence on long time scales. This property is shared by correlation functions of higher
order, Cn,0(τ1 · · · τn) = Cn,0. Correlation–response functions Cn,m(· · ·) with m > 0 vanish.
Reconstructing the full distribution Q({κ̂, κ}) from (5.1) one finds the replica symmetric
solution [13]

Q({κ̂, κ}) =
∫

dκ̄P (κ̄) e
∫

dσ κ̂(σ )[κ(σ )−κ̄] (6.2)

with

P(κ) =
K∏

i=1

∫
dκiP (κi)δ

(
h +

∑
i

u(Ji, κi) − κ

)J

. (6.3)

In next to leading order

Ȳ (x) = Y0 + Y1qEA +

[
1

2
Y2 +

1

3!
Y2x

]
q2

EA (6.4)

which yields

qEA = 1

I
√

K
ε −

[
13

3

K + 1

K
− 1

I
√

K

]
ε2. (6.5)

As shown below this solution is unstable.
Solution (b) of section 5.1 requires Q̄(x) = 0 and with (5.33)

∂xȲ (x) = Y0 + Yr

∫ 1

x

dx ′R̄(x ′) = 1. (6.6)

This has, however, no solution with R̄(x) �= 0.

6.2. Stability analysis

Various criteria can be used to test the stability of a given solution. One may, for instance,
ask whether the correlation–response functions on the short time scale approach the values
determined by the dynamics on the long time scale. For example the pair correlation function
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q(t) = 〈σ(t)σ (0)〉 should approach qEA for t ≈ t∗. This decay is expected to be algebraic,
but a corresponding analysis is beyond the scope of this paper.

The general procedure used in statics as well as in the present formulation of dynamics
consists in iteratively connecting subtrees to a new tree and expressing the properties at the
new vertex by properties at the base vertices of the subtrees searching for fixed points of this
mapping. A necessary condition for stability is the decay of small perturbations under this
mapping. Equations (5.23) and (5.24) are actually such mappings.

For T > Tc the trivial solution Q̄(x) = 0 and R̄(x) = 0 is expected to be valid. A small
perturbation δQ̄i(x) on site i is mapped onto

δQ̄o(x) = I 2KV 2
2 δQ̄i(x) (6.7)

at site o, and a corresponding mapping for R̄0(x). Since I 2KV 2
2 < 1 for T > Tc the trivial

solution fulfills this stability criterion. By the same token this solution is unstable for T < Tc.
The stability criterion for solution (a) reads with (6.4) and Ȳ (x) = 1

δQ̄o(x) = [
1 + 1

3Y2xq
2
EA

]
δQ̄i(x) > δQ̄i(x) (6.8)

and the same for δR̄(x). This solution is therefore unstable for T < Tc as well.
Finally solution (c) for J = ±I is investigated. We may test the stability with respect

to a perturbation δQ̄(x) and δR̄(x) = X(Q̄(x))∂xδQ̄(x). This yields with Ȳ (x) = 1,
δQ̄0(x) = δQ̄i(x) and δR̄0(x) = δR̄i(x). This means that this solution is marginal with
respect to perturbations of this kind. Investigating a perturbation δR̄(x) with δQ̄(x) = 0 one
obtains

δR̄0(x) = δR̄i(x) + Yr

∫ 1

x

dx ′δR̄i(x
′)R̄(x). (6.9)

Considering the second contribution a perturbation at some value x ′ creates fluctuations at
x < x ′ only. This means that the perturbation at x ′ is not enhanced due to this term and
this solution is marginal with respect to a perturbation of this kind as well. Such a marginal
stability criterion is actually expected because of the reparametrization invariance mentioned
at the end of section 5.4.

7. Discussion

In this paper, we have shown that the long time dynamics of an Ising spin glass with binary
couplings J = ±I on the Bethe lattice is of the form known from the Sherrington–Kirkpatrick
model. This is remarkable in so far as the interaction is restricted to nearest neighbours. In
contrast to a lattice in finite dimensions, however, the typical size of closed loops scales with
ln(N) for a system of N sites.

The second main result of this paper, the failure of a corresponding solution for general
distributions P(J ), is unexpected, and the nature of the low-temperature phase in this case is
not known. A similar breakdown of a replica or cavity method calculation for general P(J )

cannot be excluded since the relevant equations have been evaluated for binary coupling only
[13]. It might be of interest to perform an expansion of the relevant equations around Tc,
possibly within the extended replica scheme proposed by de Dominicis et al [18]. In this
scheme two-order parameter functions corresponding to Q̄(x) and R̄(x) are used.
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[13] Mézard M and Parisi G 2001 Eur. Phys. J. B 20 217
[14] Mottishaw P 1987 Europhys. Lett. 4 333
[15] De Dominicis C and Goldschmidt Y Y 1989 J. Phys. A: Math. Gen. 22 L775

De Dominicis C and Goldschmidt Y Y 1990 Phys. Rev. B 41 2184
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